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Numerical Methods for Computing Angles 
Between Linear Subspaces 

By Ake Bjorck and Gene H. Golub* 

Abstract. Assume that two subspaces F and G of a unitary space are defined as the ranges 
(or null spaces) of given rectangular matrices A and B. Accurate numerical methods are 
developed for computing the principal angles Ok(F, G) and orthogonal sets of principal 
vectors Ilk E F and Uk C G, k = 1, 2, ... , q = dim(G) < dim(F). An important application 
in statistics is computing the canonical correlations 0Uk = COS Ok between two sets of variates. 
A perturbation analysis shows that the condition number for Ok essentially is max(K(A), K(B)), 
where K denotes the condition number of a matrix. The algorithms are based on a pre- 
liminary QR-factorization of A and B (or A"l and B"), for which either the method of 
Householder transformations (HT) or the modified Gram-Schmidt method (MGS) is used. 
Then cos 6k and sin Ok are computed as the singular values of certain related matrices. 
Experimental results are given, which indicates that MGS gives ok with equal precision and 
fewer arithmetic operations than HT. However, HT gives principal vectors, which are 
orthogonal to working accuracy, which is not generally true for MGS. Finally, the case when 
A and/or B are rank deficient is discussed. 

1. Introduction. Let F and G be given subspaces of a unitary space E", and 
assume that 

(1) p =dim(F) > dim(G) = q _ 1. 

The smallest angle 0,(F, G) = 61 E [0, i/2] between F and G is defined by 

COs = max max u"v, 1uH2 = 1, 1v12 = 1. 
uEF vfG 

Assume that the maximum is attained for u = iu1 and v = v1. Then, 02(F, G) is defined 
as the smallest angle between the orthogonal complement of F with respect to u, 
and that of G with respect to vl. Continuing in this way until one of the subspaces 
is empty, we are led to the following definition. 

Definition. The principal angles 0, C [0, i/2] between F and G are recursively 
defined for k = 1, 2, , q by 

(2) cosk = max max uv = U kVk, 1u12 = 1, 1v2 = 1, 
vCF vCEG 

subject to the constraints 
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u',u = 0, v',v = 0, j = 1, 2, , k - 1. 

The vectors (u1, , us) and (v1, .. , van) are called principal vectors of the pair 
of spaces. 

We note that the principal vectors need not be uniquely defined, but the principal 
angles always are. The vectors V = (v1, * , 'Va) form a unitary basis for G and the 
vectors U = (u1, ... , us) can be complemented with (p - q) unitary vectors so that 
(u1, , up) form a unitary basis for F. It can also be shown that 

H 
U jVk = 0, j -4 k, j = 1, , p, k = 1, , q. 

For an introduction to these concepts, we refer to [1]. An up to date list of references 
can be found in [9]. 

Principal angles and vectors have many important applications in statistics and 
numerical analysis. In [7], the statistical models of canonical correlations, factor 
analysis and stochastic equations are described in these terms. The eigenvalue prob- 
lem Ax = XBx can have continuous eigenvalues if the nullspaces associated with 
A and B intersect [13]. By taking the vectors Uk corresponding to cos Ok = 1, we get 
a unitary basis for the intersection, which can be used to simultaneously deflate 
A and B. Other applications are found in the theory of approximate least squares 
[8] and in the computation of invariant subspaces of a matrix [21]. 

The purpose of this paper is to develop new and more accurate methods for 
computing principal angles and vectors, when the subspaces are defined as the ranges 
(or nullspaces) of two given matrices A and B. In Section 2, we describe the standard 
method of computing canonical correlations and show why this method may give 
rise to a serious loss of accuracy. Assuming that unitary bases for F and G are known, 
we derive, in Section 3, formulas for computing principal angles and vectors from 
the singular values and vectors for certain matrices. To find out how accurately 
the angles are defined in the presence of uncertainties in A and B, first order per- 
turbation results are given in Section 4. In Section 5, different numerical methods 
for computing the unitary bases, and the use of the formulas from Section 3, are 
discussed with respect to efficiency and accuracy. The special problems which arise 
when A and/or B are exactly or nearly rank deficient are discussed in Section 6. 
Finally, some numerical results are given in Section 7. 

2. Canonical Correlations. For a matrix A, we denote the range of A by R(A) 
and the nullspace of A by N(A): 

(3) R(A) = {u I Ax = u}, N(A) = {x I Ax = O}. 

In the problem of canonical correlations, we have F = R(A), G = R(B) where A 
and B are given rectangular matrices. Then, the canonical correlations are equal 
to cos Ok, and it can be shown that 

(4) COS Ok = O-k, Uk = AYk, Vk = BZk, k = 1, 2, q, 

where Tk ? 0 are eigenvalues and yk, Zk properly normalized eigenvectors to the 
generalized eigenvalue problem 

(5) [BzA j = [A- A BHBI [- 
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Assume for convenience that A and B have full column rank. The standard method 
[6] of computing canonical correlations is to compute AHA, BHB, A HB and perform 
the Choleski decompositions 

A A = R~RA, B HB R BRRB, 

where RA and RB are upper triangular. 
The eigenvalue problem (5) is then equivalent to the eigenvalue problems for 

a pair of Hermitian matrices 

MM y, = o-yi, M Mzl, = U'Zi 

where 

M = (RH) (AHB)Rl, 9i = RAyi, Z, = RBZi. 

These can be solved by standard numerical methods. 
When q = 1 and B = b, the principal angles and vectors are closely related to 

the least squares problem of minimizing jlb - AxI12. In fact, with the notations 
above (but dropping subscripts), we have 

y = x/IIAxII2, z = 1/11bl12, a = IIAxII2/11b12, 
and (5) is reduced to 

A Hbz = a AHAy, bHAy = abHbz. 

But the first equation here is the normal equations for x = ay/z. Thus, the classical 
algorithm reduces for q = 1 to solution of the normal equations by Choleski's 
method. 

Lately it has been stressed by several authors that forming the normal equations 
in single precision involves a loss of information which cannot be retrieved. For 
linear least squares problems, other methods without this disadvantage have been 
developed ([2], [16] and [17]). Our aim in this paper is to generalize these methods 
to the case when q > 1. 

3. Solution Using Singular Values. In most applications, each subspace is 
defined as the range, or the complement of the range, of a given matrix. In this case, 
a unitary basis for the subspace may be computed in a numerically stable way by 
well-known methods for the QR-decomposition of a matrix. These methods will 
produce for an m X n matrix A, with m _ n, a decomposition 

A = (Q' I Q ) p(m-p) X n 

where rank(S) = p and Q = (Q' I Q") is unitary. Then Q' gives a unitary basis for 
the range of A, R(A), and Q" a unitary basis for the complement [R(A)]-. Notice 
that the case when a subspace is defined as the nullspace N(AH) of a matrix AH is 
included, since N(AH) = [R(A)]-. The computation of unitary bases will be dis- 
cussed in more detail in Sections 5 and 6, and we assume here that such bases have 
been obtained. 

Recently, an efficient and numerically stable algorithm for computing the singular 
value decomposition [11] (SVD) of a matrix has been developed [17]. This algorithm 
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will be our basic tool for computing principal angles and vectors. The relation between 
singular values and our problem is clear from the following theorem. 

THEOREM 1. Assume that the columns of QA and QB form unitary bases for two 
subspaces of a unitary space Em. Put 

(6) M QHQ 

and let the SVD of this p X q matrix be 

(7) M = YCZH, C = diag(ao, a--, 

where yHy = ZHZ = ZZH = Jq. If we assume that a, ? U2 _ ** * _ , then the 
principal angles and principal vectors associated with this pair of subspaces are given by 

(8) cos Ok = Ak(M), U = QA Y, V = QBZ. 

Proof. It is known [18] that the singular values and singular vectors of a matrix 
M can be characterized by 

(9) (7k max (YHMz) =YkMZk, 

subject to 

yHy= Z1ZJ = 0, j = 1, ,k- 1. 
If we put 

U = QAY E R(QA), V = QBZ & R(QB), 

then it follows that I UH 2 = I vY H 2 I VJ 2 = IzI12 and 
HI Hr H H 

y y3 = U U", Z Zj = V V3. 

Since yHMZ YHQBZ u HV, (9) is equivalent to 

UH H 
7k= max (uv) = U kVk 

subject to 

u u, = viv = 0, j = 1, , k - 1. 

Now (8) follows directly from the definition of principal angles and vectors (2), 
which concludes the proof. 

For small angles, 6k is not well determined from cos 6k and we now develop 
formulas for computing sin 0k. Let QA and Q,, be defined as in Theorem 1. For 
convenience, we change the notations slightly and write (7) and (8) as 

(10) M = YAC YlB, UA = QA YA, UJB = QB YB3 

We split QB3 according to 

(1 1 ) QlQ = PAQ1 + (I - PA)QB = PAQB + PAQB, 

where PA = QAQQA is the orthogonal projection onto R(QA). Here 

PAIQ = QAQQB = QAM = QA YAC YB, 

and hence the SVD of the matrix PAQB is given by 
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(12) PAQB = UAC YB, C = diag(cos Ok). 

Since PA(I - PA) = 0, we get, from squaring (1 1), 

QB(I - PA )QB I - QBPAQB = YB(I - C2) YBf. 
It follows that the SVD of (I - PA)QB can be written 

(13) (I - PA)QB = WA S YB, S = diag(sin Ok) 

Comparing (13) with (12), it is evident that WA gives the principal vectors in the 
complement [R(QA)]j associated with the pair of subspaces ([R(QA )]-, R(QB)). 

We will, for the rest of this section, assume that, in addition to (1), we have 
p + q < m. (This is no real restriction, since, otherwise, we have (m - p) + (m - q) ? 
m, and we can work with the complements of R(QA) and R(QB3) instead.) Then, 
dim([R(QA)V) = - p > q, and we can choose the m X q matrix WA in (13) so 
that WA[UA 0. 

By analogy, we have formulas similar to (12) and (13) related to the splitting 
QA = PBQA + (I - PB)QA, 

(14) PBQA = UBC YA, (I - PB)QA = WB S YA, 

where again, since m - q _ p > q, we can choose the m X q matrix WB so that 
B B = 0. From (14), we get 

UA = QA YA = (UBC + WBS) YA YA = (UB WB)(S) 

If we put 

PBA = UAUB = (UB WB)(S) UB, 

then, since R(QB) = R(UB), we have for any x E R(QB) that PB, AX = UA UB(UBY) = 

UAY, and thus 

PB, AX C R(QA), IIXI12 = IIPBAX 112- 

We can now always find an m X (m - 2q) matrix ZB such that (UB WBZB) is a unitary 
basis in E'. Then 

c -s 0 U 
(15) PB,A = (UB WB I ZB) S C Wfj 

is the matrix of a unitary transformation, mapping R(QB) into R(QA). Its restriction 
to R(QB) is PBA, and it leaves all vectors in R(ZB) unchanged. This transformation 
is called a direct rotation [9] from R(QB) into R(QA). It is distinguished from other 
unitary transformations P taking R(Q1,) into R(QA) by the property that it minimizes 
each unitarily invariant norm of (I - P)H(I - P). If R(QB) n [R(QA)]- is empty, 
then all Ok < r/2 and the direct rotation is uniquely determined. 

Similarly, we can construct a direct rotation taking R(UA) into R(QB). It is obvious 
that the relations between the two subspaces are very completely characterized by 
the quantities C, S, UA, WA, UB and WB. 
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4. Perturbation of Principal Angles. We consider here how the principal angles 
between R(A) and R(B) change when the elements in A and B are subject to per- 
turbations. We assume in this analysis that the matrices A and B are m X p and 
m X q, respectively, and have linearly independent columns. Consider first a per- 
turbation of A only, 

A, = A + EE = (A + EEI) + EE2, 

where we have split the perturbation into components in and orthogonal to R(A), 

El = PAE, E2 = (I - PA)E. 

Let the polar decomposition of A + EE1 be 

A + EE1 = QAHA, QAQA = I, HA positive definite. 

Then, since R(A) = R(A + EE1), QA gives a unitary basis for R(A). 
To get a unitary basis for R(A,), we first note that for small absolute values of E, 

the matrix 

(A + EE)H'1 = QA + EF2, F2 = (I - PA)F, F= EHA1, 

is nearly orthogonal. Indeed, since QH F2 = QfPAF2 = 0, we have 

S = I - (QA + E1F2) (QA + EL2) = -E2FH F2, 

and 

(16) O1(S) = E. _1(F2) ? EO_1I(F). 

Then, using a series expansion from [4] for the unitary factor QA, in the polar de- 
composition of AHA , it follows that 

(QA + EF2) QAP(I S)"2 

(17) _2S ._ _(2)5 ) 

where the matrix series converges if p(S) = o1(S) < 1. 
Also, asymptotically, when E -> 0, QA, is the unitary matrix with range R(A,) 

which is closest to QA. 

From the well-known inequalities for singular values [15, p. 30], 

Tk(A + B) ? GTk(A) + Gk(B), Tk(AB) < 0Tk(A)0Tk(B), k = 1, 2, 

we get 

(1 8) o 1(F) ? o1(E)o1(HA 1) < c1(E)/(op(A) - Eof1(E1)). 

Since certainly a1(E) > a,(El), a sufficient condition for convergence of (17) is that 

EG1 (E)/ap( A) < 2- 

Premultiplying (17) by PB, we get 

PBQAe = PBQA + EPB( - PA)F + PBQA,(2S + 8S2 + + 2 
+ + 

from which we derive the inequality 
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k0k(PBQA,) - G-k(PBQA)I ? eo01(PB(I - PA)) + r, 

where 

r = p1(S) + 8ff2(S) + ... < 210(S)/(l - ?l(S)). 

Now, we have 0T1(PB(I- PA)) = sin Omax and, estimating o1(S) and o1(F) by (16) 
and (18), it follows that 

(19) 1IA COS Okl 6-sin Omax + 0(82), 8 = EO1(E)/lo(A). 

If instead we premultiply (17) by (I - PB) and proceed in the same way, we arrive at 

(20) IA sin Okl < ? 8cos Om in + 0(82), 8 = Eoi(E)/1o(A). 

Now, assume that both A and B are perturbed by 5A and 5B, respectively, where 

11SAI12/H All2 _ EA, 118B112/11B112 _ EB. 

Then 

COS Ok = [Gk(PBQAe) - G-k(PBQA)] + [G-k(PBQA) - G-k(PBQA)] 

and, from (19), we get 

|A COS Okl ? EAK(A) sin Omax(A, BE) + EBK(B) sin Omax(A, B) + 0(82), 

where 

(21) K(A) = ol(A)/op(A), K(B) = o-(B)/oq(B), 8 = EAK(A) + EBK(B). 

A corresponding estimate holds for A A sin Okj. Obviously, we have 6(A, Bj) = 6(A, B) 
+ 0(6), and, thus, these estimates can be simplified to 

COS 
Ok} < sin Omaxl + 0(2 

ksin Ok) COS Om in)+08) 

Combining these two estimates yields 

2 -sin A5kl -$ 8g(0k) + 0(8 ) 

where 

(sifl Omax COS Om in\O 

g(6) 
= m si - -COS 0k = k + Ak- 

The maximum of g(6) for 0 ? 0 ? r/2 is attained for 

0 = arctan(sin Omax/COS 6min)- 

Since 2 sin 2 AO = AO + 0(A'3), it follows that 

(22) l AOkl ? gmax(EAK(A) + EBK(B)) + 0(82), 

where 

gmax = (sin Omax + C Om niJ1 = 21/2 

We conclude that when both K(A) and K(B) are small, then the angles Ok are well 
determined. 
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We note that, if the columns in A are scaled, then K(A) will change but not R(A). 
Also, the numerical algorithms for the QR-decomposition have the property that, 
unless column pivoting is used, they give the same numerical results independent 
of such a scaling. Therefore, it is often more relevant to take in (21) as condition 
number for A the number 

K'(A) = minK(AD), D = diag(d1, , dr). 
,, 

It has been shown in [20] and [21] that i(AD) is not more than a factor of pl/2 away 
from its minimum, if in AD all columns have equal L2-norm. This suggests that 
A and B should be assumed to be preconditioned so that 

Ila,112 = l1b,12 = 1, i = 1, *, p, = 1, ,q. 

We remark that K'(A) is essentially the spanning precision of the basis in R(A) provided 
by A as defined in [21]. 

5. Numerical Methods. We assume in this section that the columns in A and 

B are linearly independent. The singular and near singular case will be briefly dis- 
cussed in Section 6. For convenience, we also assume that A and B are real matrices, 
although all algorithms given here can easily be generalized to the complex case. 
Computed quantities will be marked by a bar. 

In order to get the orthogonal bases for F and G, we need the QR-decompositions 
of the matrices A and B. We now describe two efficient methods for computing 
these. In the method of Householder triangularizations (HT) [16], orthogonal trans- 
formations of the type Qk = I - 2wkw are used, where 

Wk = (0, . . ., 0, Wkk, 
. . 

., Wmk) |I |WkI2 12 

The m X p matrix A is reduced to triangular form using premultiplications 

Q, Q2Q1A 
RA 

-P 
'UIn 

- P 

where Wk is chosen so that Qk annihilates the appropriate elements in the kth column. 
Since Q-' = Qk, orthogonal bases QA for R(A) can then be computed by premul- 
tiplying the first p columns in the unit matrix Im by the same transformations in re- 
versed order, 

QA = Q1Q2 ...Q ) 

For this method, a very satisfactory error analysis is given in [23]. 
Assume that floating point arithmetic with a mantissa of t binary digits is used, 

and that inner-products are accumulated in double precision wherever possible. 
Then, there exists an exactly orthogonal matrix Q such that the computed matrices 
satisfy 

(23) Q T(A + EA) ( -) ' QA Q(O FA Q +FA 

IIEAI IF = 12.5p2 t IIAIIF, IIFA IF = 12.5p 3/22 t, 
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where Qx is an exactly orthogonal basis for R(A + EA). From this and a similar 
estimate for QB, we get 

(24) Iok(M) - Ok(M)l <? o(M - M) ? 13.O(P312 + q 32)2', 

where M = QJTQB and the constant 13.0 accounts for the rounding errors in com- 
puting the product QATQB. We have ?k(M) = cos ok, where Ok are the exact angles 
between (A + EA) and (B + EB). Thus, the difference between Ok and Ok can be 
estimated from (22), 

(25) |Ok - Ok ? _ 12.5 2 
2 

+ 0(82), 8 = (pK(A) + qK(B))2 

Finally, the errors &k(M) - o,(M) in computing the singular values of M, using the 
procedure in [17], will be of the same order of magnitude as those in (24). 

The error estimate given above is satisfactory, except when 6k << 1. In this case, 
the errors in cos 6k from (24) will give rise to errors in 6k which may be much larger 
than those in (25). We return later to the problem of accurately computing small 
angles. 

An orthogonal basis Q I for [R(A)]- = N(AT) can be obtained by applying the 
transformations Qk, k = p, , 1, to the last (m - p) columns in I,, 

QA Q 1Q2 (I"mp 

Also, in this case, the estimate (23) for QA, (24) and (25) still hold if the factor p3/2 
is everywhere replaced by p(m - p) /. 

The QR-decomposition of a matrix A can also be computed using the modified 
Gram-Schmidt method (MGS) [2]. The matrix A is then transformed in p steps, 
A = A19A2, - ...Ap+, = QAwhere 

Ak = (q,* , ak , a , 
) 

The matrix Ak +1, k = 1, 2, . , p, is computed by 

qk = a~k) Ilak) 12, a, = (I - qkq )ak), i > k, 

and the elements in the kth row of RA are 

(k) ~~~T (k) 

rkk = I akI 112, rk, qka, j > k. 

It has been shown in [2, pp. 10, 15] that the computed matrices FA and QA satisfy 

A + EA = QARA, IIEAIIF ? 1.5(p - 1)2 t IIAIIF, 

(26) 1 IQX - QA 12 _ p(P + 1)K(A) * 2', 

where QX is an exactly orthogonal basis for R(A + EA) and quantities of order 
K2(A)2-2t have been neglected. With MGS, QA will in general not be orthogonal 
to working accuracy, and, therefore, we cannot hope to get principal vectors which 
are nearly orthogonal. Also, the condition numbers K(A) and K(B) will enter in the 
estimate corresponding to (24). However, since K(A) and K(B) already appear in 
(25), we can hope to get the principal angles as accurately as with HT. Experimental 
results reported in Section 7 indicate that this actually is the case. 
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An advantage with MGS is that the total number of multiplications required 
to compute RA and QA is less than for HT, i.e., 

MGS: p2m, HT: 2p2(m -p/3). 

If only the principal angles are wanted, then the number of multiplications in the 
SVD-algorithm is approximately 2q2(p - q/3). Thus, when m >> p, the dominating 
work is in computing QA and QB and, in this case, MGS requires only half as much 
work as HT. If also the principal vectors are wanted, we must compute the full 
SVD of M = YACY'. Assuming two iterations per singular value, this requires 
approximately 7q2(p + l Oq/2 1) multiplications. To compute UA = QA YA and UB = 

QBYB a further mq(p + q) multiplications are needed. 
To get a basis for [R(A)]- using MGS, we have to apply the method to the bordered 

matrix (A I I), and, after m steps, pick out (m - p) appropriate columns. Especially 
when (m - p) << m, the number of multiplications compares unfavourably with HT, 

MGS: m (m + 2p), HT: 2mp(m - p) + W3 

In some applications, e.g. canonical correlations, we want to express the principal 
vectors as linear combinations of the columns in A and B, respectively. We have 
UA = QA YA = A(R-'YA), and hence 

UA = A XA, UB = BXB, 

where 

(27) XA = Rj' YA, XB = R B' YB. 

We remark that if we let XA and XB denote the computed matrices, then AXA and 
BXB will not in general be orthogonal to working accuracy even when HT is used. 

We now turn to the problem of accurately determining small angles. One method 
is to compute sin 0k from the SVD (13) of the matrix 

(28) G = (I -PA)QB =QB -QAM. 

If we put G = Qg - QAM, then, using QA = Qz + FA, we get 

QB + QA(QAQB) = G + (I - QTQ )FB + (QxFA + FAQA)(QA + FB). 

Neglecting second order quantities, 

II0 - Gl12 <_ IFBII2 + 2 IIFAII2 + 2q1/22-t, 

where the last term accounts for the final rounding of the elements in M and G. 
Thus, if QA and QB are computed by HT, we have, from (23), 

k0k(G) - O(G)l <? 13.2(q3/2 + 2p )2). 

It follows that the singular values of the computed matrix G will differ little from 
sin 6k, and, thus, small angles will be as accurately determined as is allowed by (25). 
From (26), the corresponding error estimate for MGS is obtained. In the spirit of 
the modified Gram-Schmidt method, the matrix G should be computed as 

(29) G = (I - qlq T) .(I qpqT)QB. 
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Computational experience indicates that this gives much improved accuracy in 
sin 0 when K(A)>> K(B). 

Since the matrix G is m X q, computing the singular values of G when m >> q 
will require about 2mq2 multiplications. If YA has been computed, then the SVD of 
G may be computed with only mq2 multiplications from 

(30) GYB = (I - PA)QB YB = WA S 

Moreover, if UA and UB are available, we can obtain sin 0 from 

(31) (UB - UAC)T( UB - UAC) = S2 

or, alternatively, 

(32) (UB - UA)T( UB - UA) = 2(I - C). 

From the last equation, we can compute 2 sin 2ok = (2(1 - cos Ok))", which, since 
- 2? 6k < r/4, accurately determines both sin Ok and cos Ok. 

We finally remark about an apparent imperfection of MGS. When A = B (exactly), 
we will obviously get QA = QB. The exact angle equals zero, and HT will always 
give computed angles near zero. This is not true for MGS, however, since we only 
have the estimate 

|| I - QQIA 1 12 _ 2p(p + 1)K(A)2'. 

Therefore, the singular values of M = Q QA may not be near one when K(A) is 
large. If, however, only A -- B, then the rounding errors in computing QA and QB 
will not be correlated, and in an ill-conditioned case, we will probably not get all 
angles near zero either with HT or MGS. 

When A = B, then M = QrQA will be symmetric and, thus, SVD will give YA 
Ye and, therefore, UA C UB also with MGS. It follows that, if (32) is used, MGS 
will always yield angles near zero in this case. 

We have not tried to determine error estimates for the methods based on (30)-(32). 
On the test matrices described in Section 7, the method based on (28) gave signifi- 
cantly more accurate results, especially for the more well-conditioned angles. 

6. The Singular Case. We now consider the case when A and/or B does not 
have full column rank. In this case, the problem of computing principal angles and 
vectors is not well posed, since arbitrarily small perturbations in A and B will change 
the rank of A and/or B. The main computational difficulty then lies in assigning 
the correct rank to A and B. The most satisfactory way of doing this generally is 
the following [10]. Let the m X p matrix A have the SVD 

A = QADA VA s DA = diag(Jk( A)). 

Let e be a suitable tolerance and determine p' < p from 

(33) ~ ~ ~ a O'(A) < 'E2 < E 2(A). 
i=S,'4 1 ~~~i=p' 

We then approximate A with an m X p matrix A' such that rank(A') =p', 

A' = (Q1Q"f)( 
A )( VA VA')T, DI = diag(a1, ap ), 
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where QA = (QIQ"'), VA = (V, VA') have been partitioned consistently with the 
diagonal matrix. The matrix B is approximated in the same way. 

If, instead of (1), we assume that 

p= rank(A') > rank(B') - q' > 1, 

then we can compute the principal angles and vectors associated with R(A') and 
R(B') by the previously derived algorithms, where now QI and QA should replace 
QA and QB. 

In order to express the principal vectors of R(A') as linear combinations of 
columns in A', we must solve the compatible system 

A'XA = UA = QA YA. 

Since VA' is an orthogonal basis for N(A), the general solution can be written 

XA = VADA'- YA + VA"CA, 

where CA is an arbitrary matrix. It follows that, by taking CA = 0, we get the unique 
solution which minimizes IIXA1HF; cf. [17]. Thus, we should take 

(34) XA = VADA7 YA, XB = V' D'-1 YB, 

where XA is p X p' and XB is q X q'. 
The approach taken above also has the advantage that only one decomposition, 

the SVD, is used throughout. It can, of course, also be used in the nonsingular case. 
However, computing the SVD of A and B requires much more work than computing 
the corresponding QR-decompositions. In order to make the QR-methods work 
also in the singular case, column pivoting must be used. This is usually done in such 
a way ([2], [12] and [16]) that the triangular matrix R = (r, i) satisfies 

Irkk I Z rj|, k < j < n* 
X=k 

Such a triangular matrix is called normalized, and, in particular, the sequence Ir1 I, 
Ir221, , jr,,I is nonincreasing. In practice, it is often satisfactory to take the nu- 
merical rank of A to be p' if for a suitable tolerance E we have 

(35) Irp,p,j > e > Irp +,,p,+1 1. 

We then approximate A = QARA by a matrix A' = QARI of rank p' by putting 

r= - r, _, i < p = 0 i > p'. 

It has been shown in [14] how to obtain the solution (32) of minimum length from 
this decomposition. 

If we use the criterion (33), there is a risk of choosing p' too large. Indeed, it 
seems difficult to improve on the inequalities [12] 

(36) 3(4k + 6k - 1i'2 Irkk I _ ?k(A) < (n + k + 1)1/2 Irkk l 

from which it is seen that ka(A) may be smaller than 11,kk by a factor of magnitude 2 k 

However, this rarely occurs in practice. Often the inequality 

K(A is1 I ,1 /rI, I 
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represents a pretty good approximation to the condition number for the nonsingular 
case. 

7. Test Results. The algorithms in Section 5 have been tested on the UNIVAC 
1108 of Lund University. Single precision floating-point numbers are represented 
by a normalized 27 bit mantissa, whence the machine precision is equal to 2"26 
1.5 10-8. 

For the tests, we have taken F = R(A), where A is the m X p matrix 

e0 0 11. 
A =-y2 0 e 0. , e= m/p 

0 . . e 1 

and m/p is an integer. Thus, A is already orthogonal, and we can take QA = A. 
Further, G = R(B) where B is the m X p Vandermonde matrix 

1 xO * * x 

B = 1 xl1 ... xl-l , x, = -1 + 2i/(m + 1). 

1 X -1 ... Xn- 

The condition number K(B) is known to grow exponentially with, when the ratio m/p 
is kept constant. These matrices A and B are the ones appearing in [6]. There is 
exactly one vector, u = (1, 1, , 1)', which belongs to both F and G, so there will 
be one minimum angle 0 = 0. 

For the tests, the matrix B was generated in double precision and then rounded 
to single precision. The procedures used for the QR-decompositions are apart from 
minor details identical with procedures published in [3] and [5]. The columns were 
implicitly scaled to have equal L2-norm and column pivoting was performed. Inner 
products were not accumulated in double precision. For checking purposes, a three 
term recurrence relation [8] was used in double precision to compute an exact single 
precision orthogonal basis for R(B). 

For m/p = 2 and p = 5(2)17, QA was computed both by the method of House- 
holder and the modified Gram-Schmidt method. Then cos 0k, YA and YB were com- 

TABLE 1 

Householder Gram-Schmidt 
m P F(UA) F(UB) m(cos Ok) F(U ) F(GI) m(cos Ok) 

10 5 15 21 5 20 18 4 
14 7 22 35 8 27 33 10 
18 9 40 27 10 37 437 41 
22 11 42 29 38 40 1130 49 
26 13 58 48 1416 47 9013 621 
30 15 62 51 2535 60 55322 1758 
34 17 68 60 7582 76 788466 32650 
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TABLE 2 

m = 26 p = 13 Householder Gram-Schmidt 
k COS ok A COS ok *10 A COS ok* 108 

1 0.99999991 2 2 
2 0.99823275 0 51 
3 0.99814397 - 32 - 135 
4 0.99032703 6 - 137 
5 0.98988846 5 351 
6 0.97646081 0 - 58 
7 0.96284604 38 21 
8 0.94148906 - 5 - 10 
9 0.91758607 - 31 - 40 

10 0.87013717 25 -290 
11 0.76365752 1416 620 
12 0.06078817 106 - 18 
13 0.01558526 - 52 - 55 

TABLE 3 

Householder' Gram-Schmidt' 
from (29) from (28) 

m P m(sin ok) m(sin ok) m(sin ok) m(sin 60) m(sin Ok) 

10 5 3 2 3 3 6 
14 7 7 8 3 4 8 
18 9 32 31 55 9 87 
22 11 141 142 46 39 612 
26 13 1661 1662 366 517 5902 
30 15 2919 2912 1290 1355 32537 
34 17 7604 7608 37284 798 126731 

1 sin Ok computed as 0c((l - PA)QV), sin ok as I((I - PB)QA). 

puted by the procedure in [17], and finally UA and UB from (11). The results are 
shown in Table 1, where 

m(Jk) = max I|k - 'kH 10, F(U) = III - UTUl IF 1O 
k 

Notice, that because of rounding errors in the computation of the SVD, the values 
0-k are not exact to single precision. 

For the Gram-Schmidt method, the predicted lack of orthogonality in UB, when 
K(B) is large, is evident. However, there is no significant difference in the accuracy 
of cos ok between the two methods. In Table 2, we show for m = 26 and p = 13 
the errors in cos ok for each k. 

For the same values of m and p, sin ok were computed from the singular values 
of both the matrix (I - PA)QB and the matrix (I - PB)QA. The results in Table 3 
again show no significant difference in accuracy between the two methods. For the 
Gram-Schmidt method, the values of sin Ok differ somewhat between the two matrices, 
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TABLE 4 

m = 26 P = 13 Householder' Gram-Schmidt' 
k sin Ok A sin ok- 108 A sin Ok 108 A sin Ok 108 A sin ok 108 

1 0.00000000 2 5 2 4 
2 0.05942260 0 0 0 - 2 
3 0.06089681 485 484 69 76 
4 0.13875174 56 55 2 22 
5 0.14184706 - 30 - 29 - 23 - 71 
6 0.21569431 32 31 - 35 - 20 
7 0.27005038 - 127 - 127 - 20 - 26 
8 0.33704301 26 25 - 2 3 
9 0.39753669 91 90 - 25 - 5 

10 0.49280931 - 44 - 42 260 318 
11 0.64562106 - 1661 - 1662 -365 -517 
12 0.99815036 5 11 - 158 15 
13 0.99987821 14 20 90 13 

1 sin ok computed as Uk((I - PA)QB), sin ok as k((I -PB)QA)- 

whereas the corresponding values for the Householder method are almost identical. 
This is confirmed by Table 4, where, again for m = 26, p = 13, results for each k 
are shown. For the Gram-Schmidt method the matrix (I- PB)QA was computed 
both from (28) as QA - QB(QBQA) and from (29) as II (I - qkq k QB. The results 
in Table 3 clearly show that (29) should be used. 

The authors are very pleased to acknowledge the help of Mr. Jan Svensson, 
who carried out most of the tests described in this section. 
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